Determining surfaces of revolution from their implicit equations
نویسندگان
چکیده
Results of number of geometric operations (often used in technical practise, as e.g. the operation of blending) are in many cases surfaces described implicitly. Then it is a challenging task to recognize the type of the obtained surface, find its characteristics and for the rational surfaces compute also their parameterizations. In this contribution we will focus on surfaces of revolution. These objects, widely used in geometric modelling, are generated by rotating a generatrix around a given axis. If the generatrix is an algebraic curve then so is also the resulting surface, described uniquely by a polynomial which can be found by some well-established implicitation technique. However, starting from a polynomial it is not known how to decide if the corresponding algebraic surface is rotational or not. Motivated by this, our goal is to formulate a simple and efficient algorithm whose input is a polynomial with the coefficients from some subfield of R and the output is the answer whether the shape is a surface of revolution. In the affirmative case we also find the equations of its axis and generatrix. Furthermore, we investigate the problem of rationality and unirationality of surfaces of revolution and show that this question can be efficiently answered discussing the rationality of a certain associated planar curve.
منابع مشابه
A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملApproximate Implicitization of Space Curves and of Surfaces of Revolution
We present techniques for creating an approximate implicit representation of space curves and of surfaces of revolution. In both cases, the proposed techniques reduce the problem to that of implicitization of planar curves. For space curves, which are described as the intersection of two implicitly defined surfaces, we show how to generate an approximately orthogonalized implicit representation...
متن کاملControlled Blending of Procedural Implicit Surfaces
Implicit surfaces are becoming increasingly popular in geometric modeling. Procedurally defined implicit surfaces, in particular surfaces built around skeletons, provide an intuitive representation for many natural objects, and objects commonly used in geometric modeling. This paper presents several techniques that provide good control over the way different skeletally defined implicit surfaces...
متن کاملThe Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 290 شماره
صفحات -
تاریخ انتشار 2015